
Improving the Performance of Complex Agent Plans
Through Reinforcement Learning

Matteo Leonetti
Sapienza University of Rome

Department of Computer and System Sciences
via Ariosto 25, 00185

Rome, Italy
leonetti@dis.uniroma1.it

Luca Iocchi
Sapienza University of Rome

Department of Computer and System Sciences
via Ariosto 25, 00185

Rome, Italy
iocchi@dis.uniroma1.it

ABSTRACT
Agent programming in complex, partially observable and
stochastic domains usually requires a great deal of under-
standing of both the domain and the task, in order to pro-
vide the agent with the knowledge necessary to act effec-
tively. While symbolic methods allow the designer to spec-
ify declarative knowledge about the domain, the resulting
plan can be brittle since it is difficult to supply a symbolic
model that is accurate enough to foresee all possible events
in complex environments, especially in the case of partial
observability. Reinforcement Learning (RL) techniques, on
the other hand, can learn a policy and make use of a learned
model, but it is difficult to reduce and shape the scope of the
learning algorithm by exploiting a priori information. We
propose a methodology for writing complex agent programs
that can be effectively improved through experience. We
show how to derive a stochastic process from a partial spec-
ification of the plan, so that the latter’s perfomance can be
improved solving a RL problem much smaller than classical
RL formulations. Finally, we demonstrate our approach in
the context of Keepaway Soccer, a common RL benchmark
based on a RoboCup Soccer 2D simulator.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Algorithms

Keywords
Learning (single and multi-agent), Formal models (including
robot plans, ant robots)

1. INTRODUCTION
Despite the great deal of research on planning over many

years and in many different domains, planning in dynamic
and uncertain domains is still a challenging task. In many

Cite as: Improving the Performance of Complex Agent Plans Through
Reinforcement Learning, M. Leonetti, L. Iocchi, Proc. of 9th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.),
May, 10–14, 2010, Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

applications, agents operate in highly dynamic and uncer-
tain environments where most of the changes are not a con-
sequence of the agent behavior. They usually have limited
knowledge of the environment and noisy sensors. Many ap-
proaches rely on a transitional model of the domain, in these
cases the knowledge about the environment is encoded and
exploited for planning either offline or online.

As stated by Bonet and Geffner [2], creating a controller
that maps observations into actions has been mainly achieved
in three ways:

• the programming approach, where the controller is pro-
grammed by hand in a suitable high-level procedural
language;

• the planning approach, where the controller is derived
automatically from a suitable description the actions,
sensors and goals;

• the learning approach, where the controller is derived
from experience.

The programming approach allows to encode procedural in-
formation about how the task must be performed, but it
makes improving the agent’s behavior quite difficult, leaving
little or no room for automation. The planning approach,
on the other hand, allows to provide the agent with declar-
ative knowledge about the environment, but is sensitive to
inaccuracy of the model: in the class of environments we are
considering, a declarative model cannot in general be able
to foresee all possible events that can cause the plan to fail.
This issue, especially in robotics, leads to the need for execu-
tion monitoring [14], that constitutes a whole research field.
Finally, the learning approach can learn both a model of the
environment and/or a policy, but it is particularly difficult
for the designer to shape the search space, even when his/her
knowledge could reduce the learning burden significantly.

In spite of many efforts to planning and learning in com-
plex domains, handcrafted plans still have a major role in
many applications, even though they require a lot of effort
from the designer and the results are of limited use in highly
dynamic and uncertain domains.

Some relevant works in the direction of integrating a priori
knowledge into a learning framework are present (cf Section
5). However, these works have limited applicability and do
not scale to the class of problems we consider.

In this paper we introduce a novel use of Reinforcement
Learning (RL) to improve planning from experience, while
still allowing the designer to write a knowledge base or a
set of plans. The proposed approach allows to convey prior
knowledge to the agent in a straightforward way, more specif-
ically in the form of a partially specified plan (or a set of

723

723-730

plans). This is in contrast with standard approaches to
learning to perform a specific task, which usually require
a non negligible effort in the definition of the features of the
environment to feed the learning algorithm, a careful choice
of a function approximator and also the definition of proper
actions.

The novelty of the approach is in the application of well
established RL theory and methods in a novel learning state
space, which is obtained directly from the plan, and it is
considerably smaller with respect to standard formulations,
thus not requiring function approximation. The proposed
approach is targeted at all the “real world” applications in
which the knowledge about the domain, even from the de-
signer perspective, does not allow him/her to establish which
plan (in a set of admissible ones) is going to perform better.
In this context the agent behavior can automatically adapt
during plan execution gaining benefit from experience.

To verify the effectiveness of our solution we implemented
and tested it in the Keepaway domain [16, 8], a benchmark
for learning algorithms at the edge of what RL can currently
face. Our learning method could learn a behavior that sig-
nificantly outperforms former results in the same setting and
converges to the optimal solution several times faster.

2. PLAN REPRESENTATION
Our approach addresses the planning problem in complex,

dynamic environments and is suited for reactive systems. In
the rest of the paper we consider reactive plans represented
as generic state machines, like state charts [6], in which every
state corresponds to a set of actions and each transition
corresponds to an event.

A plan state is a configuration of the machine that en-
codes the plan, as opposed to an environment state that
is a configuration of the variables that represent the agent
knowledge. Each plan state is associated the set of actions
that is being executed in that point of the plan. Notice that
the same set of actions may occur several times in different
plan states. The state of the whole system is the Cartesian
product of the plan and the environment state spaces.

An event is a general happening in the environment that
can be whatever the agent is capable of detecting, for in-
stance: a condition that becomes true, a message received
from another agent, a timeout expired or a joint that reached
its target position.

The representation of plans considered in this paper is
based on a transition system defined over plan states and
events. Such a transition system determines a set of plans, or
plan schemas, as formally stated in the following definition.

Plan Schema 1. A Plan Schema is a tuple 〈S, s0, F, E,
Φ, A, L, T 〉 where:

• S is a finite set of plan states
• s0 is the initial plan state
• F ⊂ S is a set of final plan states
• E is a finite set of events
• Φ is a set of conditions
• A is a set of actions
• L : S → ℘(A) is a total labeling relation that maps

plan states on actions
• T : S × E × Φ → S is a transition relation augmented

with a triggering event and a condition. For each s ∈
S, e ∈ E and φ ∈ Φ, φ must entail the pre-conditions
of all the actions in L(T (s, e, φ))

The underlying assumption is that all actions are indeed
procedures that involve some actuators and then take time
to execute. During the execution of an action the environ-
ment state changes continuously while the plan state does
not. Indeed this representation does not model explicitly
the agent’s knowledge, but only the execution state of the
plans.

The outcome of actions may be uncertain and we assume
that a knowledge base (KB) exists such that at any moment
it is possible to check whether or not it entails a certain
condition. We also assume that appropriate modules keep
such a KB updated with respect to the agent’s perceptions.

In addition to events, edges are labeled with guard con-
ditions that must hold for the edge to be enabled. The
behavior of the machine is the following: the current state
contains the currently executed set of actions which is per-
formed until one of the events associated to the outgoing
edges happens. Whenever such an event is sensed by the
agent we say that the event triggers the transition which
makes it available for execution. For the edge to be actu-
ally enabled at that time another condition must be met,
namely the guard of the transition must hold. When an
edge is triggered (the associated event happens) and enabled
(its guard condition holds) it is allowed to be followed and
the next state represents the set of actions the agent is to
execute next. If an action was present in the previous plan
state and it is not in the next one that action must be ter-
minated. On the other hand, if an action appears in the
next state it must be started. All actions that are both in
the previous and next plan state keep being executed. To
make the operational semantic clearer we assume that all
events are external (i.e., they cannot be generated by the
machine itself) and transitions are instantaneous, so that
no event can be lost during a transition execution. Final
states are absorbing states that cannot be left once entered
and determine the execution termination.

If the state machine is deterministic (it can never happen
that two transitions are triggered and enabled at the same
time), then the plan schema is actually a single plan since
no choices are left to the executor and the entire behav-
ior is specified. On the other hand, if the machine is non-
deterministic the plan schema represents multiple plans and
each non-deterministic choice is a fork among them. Noth-
ing prevents different plans from sharing common paths and
depart only where their behavior differs.

Such a state machine can easily represent any reactive,
conditional plan with also while-loops. Transformation from
plans in classical state-based representation to plan schemas
as defined above is straightforward, since events may model
post-conditions that become true and the guards can eas-
ily represent the pre-condition of the following action. But
events can do much more, they can represent communica-
tion among agents (recall that an event can be associated to
the receipt of a message), allowing the specification of multi-
agent plan schemas. Events can also represent unexpected
conditions (not necessarily the awaited post conditions), so
that the plan may also account for interrupts. Finally, it
is possible to easily extend the representation for hierar-
chical plans in which actions can be low level behaviors or
state machines themselves, even if for this paper we limit the
analysis to non-hierarchical plans. Thus, the proposed plan
representation is quite general and we do not pose any re-
striction on the origin of plans, they can come from anything
between automatic generation and handcrafting. The only

724

assumption we require is that plans must be correct, in the
sense that they should reach goal situations without violat-
ing action pre-conditions or domain constraints. Checking
correctness of input plan schemas is outside the scope of the
proposed approach.

2.1 Keepaway Soccer example
In order to make the plan representation and execution

clear, we show a simple example borrowed by the Keep-
away Soccer domain proposed by Stone and Sutton [16, 8].
Keepaway Soccer is a subtask of RoboCup Soccer in which
one team, the keepers, must keep possession of the ball in
a limited region as long as possible while another team, the
takers, tries to gain possession. The task is episodic and one
episode ends whenever the takers manage to catch the ball
or the ball leaves the region.

Keepaway soccer retains some of the complexity of real
world for the sensors are noisy, the environment is highly
dynamic, also due to adversarial agents, and the communi-
cation among agents is limited.

holdBall

passToPlayer1

takerApproaching
[Player1Ready]

passToPlayer2

 takerApproaching
[Player2Ready]

moveToPlayer2

player2calling

Figure 1: An example of a simple plan. Actions
label states, events and guards label transitions.

As an example, consider the plan schema in Figure 1.
In the initial state the agent simply holds the ball until
an event occurs. If takerApproaching happens two transi-
tions are triggered. When at least one transition is trig-
gered the post-conditions are checked, and if a transition
is also enabled (its condition at that moment holds), it is
followed setting the plan in a new state. Of course not nec-
essarily there must be at least one enabled transition when
an event happens and some events may be uncaught. In
that case, the system remains in its current state waiting
for the next event to happen. Notice that, if the guards
Player1Ready and Player2Ready are not mutually exclu-
sive, two transitions can be triggered and enabled at the
same time. Thus, the transition system is non-deterministic
and, in the same situation, two plans are available: the first
one is 〈holdBall, passToP layer1〉 while the second one is
〈holdBall, passToP layer2〉.

In other words, in general, plan schemas are a compact
way of representing multiple plans providing for different
alternatives to achieve a goal.

3. LEARNING FRAMEWORK
The learning framework is focused on exploiting the non

determinism of a plan schema to make an informed choice.
Reinforcement Learning allows us to make use of experi-

ence to improve an agent’s performance over time and seems
a reasonable choice to achieve our goal. RL has been thor-
oughly studied within the MDP framework, since this frame-

work provides a formal and neat mathematical notation for
studying an important class of sequential decision problems.
In traditional RL applications it is assumed that all relevant
knowledge about an agent’s environment can be encoded
in a structure, usually a Markov Decision Process (MDP).
Moreover, both in “model-free” and “model-based” RL tech-
niques, it is assumed that even though the agent might not
know exactly what the structure of the MDP is (e.g. the
transition matrix, etc), all sample observations are drawn
from some underlying MDP. In the class of problems we are
considering, however, assuming the existence of a fully ob-
servable MDP, or even trying to come up with a reasonable
possible encoding for the states, which could somehow guar-
antee that the Markovian assumption is respected, might be
infeasible. One reason for that is that it can be quite hard,
or even impossible, to represent all the required information
about other agents, their policies, unpredictable events, par-
allel action execution, unexpected changes in the task or in
the environment, etc. In other words, it might be unreason-
able or infeasible to assume that the task being solved can
be well represented by an MDP. This is still true despite the
sophisticated work on function approximation.

For this reason we rely on a generic knowledge base that
reflects the beliefs of the agent about the environment, with-
out building a dynamic model of it. In the following, we will
define a stochastic decision process by deriving it from the
plan and we will use this model to gather the experience to
use in subsequent trials.

The state of the system is composed by both the state of
the plan and the state of the environment but the latter is in
general not completely known. The reward depends on how
the state of the environment is perceived by the agent. In
order to make a decision in non-deterministic choice points,
we want to look forward in the plan having a value function
associated with plan states, but not looking forward in the
environment state space trying to predict the outcome of
actions (i.e. the next environment state).

The plan executor must adhere to the state machine op-
erational semantic as long as the choices are deterministic.
Whenever a non-deterministic choice must be taken, the ex-
ecutor can refer to the value function to evaluate the alter-
natives and then exploit or explore as usual in RL.

3.1 Problem Definition
In order to properly characterize the stochastic process

associated to the previously described state machine, and to
set the proposed method in the RL framework, we define it
in terms of a Semi Non-Markov Decision Process (SNMDP),
since the actions do not have the same duration and the
process is in general non Markovian.

We first show the construction of the SNMDP with an
example and then we provide its formal definition. Suppose
that at some point of the plan schema you have a choice
point like the one previously described (Figure 1). The nodes
that allow for non-determinism (i.e., that have more than a
transition associated with the same event, and whose guard
conditions are not mutually exclusive) are split into a num-
ber of nodes equal to the constituent events of the condition.
In the example, the event takerApproaching (abbreviated as
ta) is associated to the conditions Player1Ready (p1r) and
Player2Ready (p2r). This gives raise to four possible con-
stituents, namely: only p1r is true, only p2r is true, both
are true or none is. To the first three we associate a state
and an arc from the original holdBall state. The last situa-

725

tion, in which none of the conditions holds, translates into
a loop on the holdBall state.

The resulting graph is represented in Figure 2. All the
created edges correspond to the same non-deterministic ac-
tion of the SNMDP reported as ta. Since it is caused by the
perception of the event ta, the result of this action depends
on the environment and cannot be chosen by the agent. In
this section we make use of the term “action” as it is in the
literature of stochastic processes when we refer to the SN-
MDP. Therefore, while an action in the plan schema is the
actual intervention of the agent in the environment, an ac-
tion in the SNMDP is an instantaneous transition available
to the controller. An action in the SNMDP causes a change
in the state of the process but cannot modify the state of the
environment while this is the primary intention of an action
in the plan schema.

Each node associated to a constituent of the conditions is
connected to the action node containing the actions enabled
by that constituent. In our example, p1r is connected to the
node representing the action passToPlayer1 (pp1), while p2r
is connected to passToPlayer2 (pp2) and p1r&p2r is con-
nected to both. At this level the edges reaching different
action nodes are associated to different actions of the SN-
MDP. The resulting graph has a choice point in the state
p1r&p2r since in that case two actions are simultaneously
available.

holdBall ta

p1r

 ta

p2r

 ta

p1r&p2r

 ta

pp1

 pp1

pp2

 pp2 pp1 pp2

Figure 2: Creation of the SNMDP. The original
node with the action holdBall is split creating nodes
to represent the conditions

The number of nodes in which a choice point in the orig-
inal plan is split is exponential in the number of conditions.
This is not surprising, and in the case of full observability
and discrete state space this number would be equal to the
number of states storing an entire Q-function. Nonetheless,
the underlying assumption is that the domain is continuous
and partially observable so that there is no notion of single
state and considering single states or many small regions is
not possible nor desirable. Hence, even if it is possible to
consider function approximation, it is not necessary for the
number of nodes generated in practice.

To give a formal definition of the SNMDP we have in-
formally previously introduced, we define the set Ccnd(s, e)
of the constituent events generated by overlapping condi-
tions in a specific choice point (denoted as 〈s, e〉) of a plan
schema PS = 〈S, s0, F, E, Φ, T, A, L〉 as follows: if there ex-

ist k conditions φ1 . . . φk and a state sj s.t. 〈s, e, φi, sj〉 ∈ T
for each i ∈ {1, . . . , k} then Ccnd(s, e) = ℘({φk}) \ ∅ while
Ccnd(s, e) = ∅ otherwise. In our example Ccnd(holdball,
takerApproaching) = {{p1r}, {p2r}, {p1r, p2r}}.

Next, we define the set Sc of the states generated by con-
dition overlapping in all choice points:

Sc = {〈s, e, cond〉|s ∈ S, e ∈ E, cond ∈ Ccnd(s, e)}
In our example

Sc = { 〈holdball, takerApproaching, {p1r}〉,
〈holdball, takerApproaching, {p2r}〉,
〈holdball, takerApproaching, {p1r, p2r}〉,
〈holdball, player2calling, {true}〉}

Those states constitute the second layer of Figure 2 except
for the last one since the event player2calling has been omit-
ted for simplicity. Finally, we also define a utility function
Se

c to select in Sc the states that are generated by a specific
choice point as follows:

Se
c (s, e) = {〈s, e, cond〉 ∈ Sc|cond ∈ Ccnd(s, e)}

Time has not been addressed yet so far. We consider time in
discrete timesteps and actions can take multiple timesteps
to complete. We use the following notation:

• tk: the time of occurrence of the kth transition. By
convention we denote t0 = 0

• sk = s(tk) where s(t) = sk for tk ≤ t ≤ tk+1

• ak = a(tk) where a(t) = ak for tk ≤ t ≤ tk+1

We define a Semi Non-Markov Decision Process SNMDP
= 〈 Ssp, Asp, Psp, rsp〉 such that:

• Ssp = Sc ∪ S, is the state set. The set Sc is the set
generated by overlapping conditions, whereas S is bor-
rowed directly from the plan schema and accounts for
action states, that is states that are not the result of
a choice point split but are associated to actions in
execution. The first and last layer of Figure 2 are an
example of the states in S while the intermediate layer
is an example of the states in Sc.

• Asp = {a ∈ ℘(A)|∃s ∈ S s.t. L(s) = a} ∪ E, is the
action set. The first part is the co-domain of the label-
ing function in the plan schema. We create an action
for each possible set that labels the states of the plan
schema. Notice that those actions are deterministic
and we give them the same name of their target state.
In our example of Figure 1 the co-domain of labeling
function is {{holdBall}, {pp1}, {pp2}, {mp2}}. In this
example there is no parallelism, so all sets are single-
tons. You can spot the corresponding actions in Figure
2. The set E (events in the plan schema) is used to
define the actions on which the agent has no control.
These actions are non-deterministic and their outcome
depends on the environment. Again, in Figure 2, ta is
an example of such an action.

• Psp(s′, a, τ, s) = Pr(tk+1 − tk ≤ τ, sk+1 = s′|sk =
s, ak = a) is the probability for action a to take τ time
steps to complete, and to reach state s′ from state s

– if a /∈ E: the action is deterministic. An action
that is not in E connects a state in Sc to the state
in S (second to third layer in the example) labeled
with the actions enabled by the condition in that
state. Moreover, those actions do not reflect any

726

change in the environment so they always com-
plete in zero time. That is,

Psp(s′, a, τ, s)

8>>><
>>>:

= 1 if ∃ si, e, φ.
〈si, e, φ, s′〉 ∈ T
∧ s ∈ Ce

s (si, e)
∧ L(s′) = a ∧ τ = 0

= 0 otherwise

A state s is connected to the state s′ by a iff s is
a state generated by a condition constituent, it is
linked to s′ by the plan schema, and a is the label
of that link.

– if a ∈ E: the action is non-deterministic. These
actions take the time spent in the previous state
waiting for the event. An action that is in E con-
nects a state in S to itself and to all the condition
states that its split generate (first to second layer
in the example). Therefore, events cannot con-
nect all pairs of states, which translates into:

Psp(s′, a, τ, s)

8>>>>>><
>>>>>>:

= 0 if s /∈ S ∨
s′ /∈ Ce

s (s, a) ∪ {s}
=

R
H

p(tk+1 − tk ≤ τ, sk+1 =

s′|sk = s, ak = a,�h)

p(�h) d�h
otherwise

If a connection between s and s′ through e ex-
ists according to the plan schema, the value of
the transition function is the probability for the

event a to happen in the state 〈s,�h〉 ∈ S × H
where H is the domain of (continuous) hidden
variables. Since those variables are not observ-
able, the sample distribution is the (hidden) un-
derlying one marginalized over the hidden vari-
ables. This makes the stochastic process non Mar-
kovian due to partial observability.

• rsp(s′, a, k, st) is the reward function. It is Markovian
(but the total reward in general is not) and we define
its value to be 0 if a /∈ E. Therefore the immediate
reward is non-zero only for events. Since events can
take time (the time spent waiting in the previous state
for the event to happen) the reward is defined in terms
of immediate rewards as:

rsp(s′, a, k, st) =

kX
i=1

γi−1rt+i

where the rt+i are the instantaneous rewards collected
during the action execution, and γ such that 0 ≤ γ ≤
1 is the discount factor. Instantaneous rewards are
defined over perceptions, that is they are a function of
the state of the knowledge base.

In order do define a decision problem, we establish a per-
formance criterion that the controller of the stochastic deci-
sion process tries to maximize. As such, we consider the ex-
pected discounted cumulative reward, defined for a stochas-

tic policy π(s, a) and for all s ∈ Ssp and a ∈ Asp as:

Qπ(s, a) = E{
∞X

i=1

γi−1ri}

=
X

s′∈Ssp

∞X
τ=0

π(s, a)Psp(s′, a, τ, s) ·

·
“
rsp(s′, a, τ, s) +

+ γτ
X

a′∈Asp(s′)

π(s′, a′)Qπ(s′, a′)}
”

(1)

where Asp(s) is the set of actions for which Psp(s′, a, τ, s) > 0
for some value of τ . The optimal discounted reward function
is defined as:

Q∗(s, a) = maxπ Qπ(s, a), s ∈ Ssp, a ∈ Asp (2)

3.2 Learning Algorithm
Since the stochastic process is in general non Markovian,

extra attention must be paid at the algorithm used to evalu-
ate the expected reward of a given policy. Usual algorithms
based on a value function for MDPs make use of temporal
difference (TD) methods to compute the expected reward
from a state onward. The actual proof of convergence for
TD relies on the Markov property and, even if Sarsa(λ) can
be quite robust to partial observability [9], it is in general not
guaranteed to converge. It has also been shown that adding
memory to the observations can solve some POMDPs [11]
and the plan schema allows to add arbitrary memory: if the
plan schema is a tree the whole history is considered, but
loops can create any situation in between memory-less and
full memory. Practically, Sarsa(λ) should converge to a pol-
icy that, even if suboptimal, can allow for behavior improve-
ment. A sound algorithm for the general case is MCESP by
Perkins [13], and good other candidates can be found in pol-
icy search methods, whose evaluation on our framework we
leave for future work. For a brief review of results we can
leverage, please refer to Section 5

The value function, that is the cumulative discounted re-
ward from each state executing each action onward, will
converge to the expected value of the reward influenced by
the experience. It might happen that a choice point in the
stochastic process corresponds to a region of the actual state
space in which no action is in most of the cases better than
any other. In such a case the value of all the available ac-
tions in that choice point would average out each other giv-
ing no reliable estimation of the expected reward. For this
reason, a method (such as the aforementioned MCESP and
Sarsa(λ)) that performs some form of Monte Carlo update
must be preferred, so that is does not spoil the estimation of
the former states. If the available knowledge does not allow
to separate the conflicting regions in the actual state space,
the agent cannot do any better.

4. EXPERIMENTAL EVALUATION
The learning approach described in this paper has been

tested in Soccer Keepaway on the 3 vs 2 task, i.e. with three
keepers and two takers. Although the agents learn sepa-
rately and there is no communication involved in the task,
Keepaway is still a multi-agent task since the agents share
the reward signal and each agent’s action has an impact on
all the others. Thus, credit assignment is particularly diffi-

727

cult since the reward for the whole team behavior is received
by each agent as if it was its own.

In our work, we focus on the keepers and leave the takers’
behavior to their predefined policy that consists in both of
them following the ball. We refer to Stone at al. [16] and
especially to the more recent work by Kalyanakrishnan and
Stone [8] as representatives of the “RL way” to face Keep-
away Soccer and we show our methodology applied to this
task. As in that last reference, we consider the problem
of learning both a behavior for the agent in possession of
the ball and a behavior for the agents that are far from the
ball. This is an additional challenge since the two behaviors
interact making credit assignment even more problematic.

The first step consists in devising a proper set of actions.
We consider three actions for the agent closer to the ball and
three for the other two agents. The actions available to an
agent close enough to kick are holdBall that just keeps pos-
session of the ball, passToCloser that passes the ball to the
agent that is closer to the kicker and passToFree that passes
the ball to the agent whose line of pass is further from the
takers. The first action is clearly wrong since a player can-
not hold the ball indefinitely without being reached by the
takers but we added it as a control, to make sure that our
algorithm assigns the correct value to it and never chooses
that action after convergence. The actions available to the
agents far from the ball are searchForBall that just turns in
place, getOpen that is the default handcoded behavior pro-
vided by the framework described as“move to a position that
is free from opponents and open for a pass from the ball’s
current position”, and goToTheNearestCorner that goes to
the corner closer to the agent.

Figure 3: A representative run of experiments. The
x axis is the number of episodes in the run while y
axis is the hold time in tenths of seconds

After the definition of the available actions we create a
plan schema to accommodate our choice points. The entire
plan schema used in these experiments is shown in Figure 4.
States labeled with noaction have the empty action set asso-
ciated, while noevent is a special event that takes zero time.
This event has no impact on learning but it allows to add
states in the plan schema convenient for representation and
readability. Similarly, when no condition is indicated the
guard of that edge is assumed to be true, i.e. the condition
that is always fulfilled. Again, this is just syntactic sugar
and does not affect the method. The leftmost node is the
initial state, the control flows from left to right and it reaches
the rightmost node within a simulation server cycle. In each
cycle the agent must send a command to the server, thus per-
forming an action, therefore every path from the leftmost to
the rightmost nodes contains exactly one action. All of the
conditions except those that guard the edges with event tak-

erApproaching are mutually exclusive and leave no choice to
the executor. As already mentioned, in the case of the pass-
ing actions since all three of them are triggered by the same
event (takerApproaching) and their conditions (true) always
hold at the same time, there is a non-determinism that can
be exploited to make an informed choice. TakerApproaching
is triggered when the agent perceives that a taker is closer
than a certain threshold, actionPerfomed happens when the
previous actions has queued its command for the server, and
the conditions are similarly defined over state variables. In
a similar way, the three choices for the positioning behav-
ior getOpen, searchForBall and goToTheNearestCorner are
taken into account when the player is not the one closest
to the ball. In this setting even the simple Sarsa algorithm
converged to the optimal solution.

We performed different trials learning the two behaviors
simultaneously and also the passing behavior and the po-
sitioning behavior separately. Our implementation used a
greedy policy with optimistic initialization, a value of α =
0.3 and γ = 1.0 which is sound since the task is episodic and
the cumulative reward is limited. The reward signal is given
by the duration of the episode: at every server cycle each
agent receives a reward of 1/10 of second. Even if the imme-
diate reward is the same after every action, the cumulative
reward depends on the previous choices and on the behavior
of all the agents resulting in being highly non Markovian.
Indeed what each agent aims maximize is actually the team
performance. A representative trial is plotted in Figure 3
where each point is the average over a window of 50 episodes.
With our approach we obtain the optimal behavior (that can
be manually verified to be when passToFree and goToThe-
NearestCorner are chosen) after about 200 episodes in the
case of learning both passing and positioning, with an aver-
age episode duration after learning of about 31 seconds. In
previous works [16, 8] the best results are about 16 seconds
of hold time and they take tens of thousands of episodes to
be learned. We also show the learning curves of the single
behaviors separately when coupled with the optimal choice
for the other one. It appears that the passing behavior is
the harder to learn, while positioning is learned in the first
few episodes. Moving to the nearest corner without the ball
then proves to be the crucial action that outperforms its al-
ternatives quite quickly. In Figure 5 we show the box-plot of
the distributions of the episodes’ duration before (random
behavior) and after learning. Both plots are drawn from 250
runs. We first used the Shapiro-Wilk normality test to check
whether the two samples come from a normally distributed
population, which turned out to be false for the second sam-
ple. Then, we used the non-parametric Mann-Whitney U
test to confirm that the two samples do not (are extremely
unlikely to: p = 5.7271 ∗ 10−26) come from the same distri-
bution. This means that the learning algorithm has indeed
had a statistically significant impact on the duration of the
episodes. The domain proved to be extremely noisy and the
variance of both the samples is quite noteworthy.

At the cost of devising a few (quite simple indeed) ac-
tions, and creating a partially specified plan exploiting the
designer’s knowledge about the task, we obtained a perfor-
mance twice as high as the previous works in a number of
learning episodes thousands of times smaller even with an
algorithm as simple as Sarsa. The burden of creating the
state representation and tailoring the function approxima-
tion for traditional RL is quite remarkable compared to the
effort required of a designer to define such a plan schema

728

noaction

noaction

noevent [BallSeen &
 BallKickable]

noaction
noevent [BallSeen &

 not BallKickable]

searchForBall

noevent [not BallSeen]

passToClosertakerApproaching

holdBall
 takerApproaching

passToFree
 takerApproaching

intercept noevent [NearestToBall]

getOpen
 noevent [not NearestToBall]

searchForBall noevent [not NearestToBall]

goToTheNearestCorner

 noevent [not NearestToBall]

actionPerformed

actionPerformed

 actionPerformed

actionPerformed

actionPerformed

actionPerformed

actionPerformed

actionPerformed

Figure 4: The plan schema for a keeper with choice points on the passing and positioning behaviors

Figure 5: Box-plot of the distributions of the
episodes’ duration (1) before and (2) after learning.

and implement those actions. Also notice we made little use
of perceptions, since conditions and events consider only a
few aspects of the environment.

5. RELATED WORK
Our work can be considered as part of the field of Hier-

archical Reinforcement Learning (HRL). The overall idea of
HRL is the ability of expressing constraints on the behavior
of the agent so that knowledge about the task and the en-
vironment can be exploited to shrink the search space. The
optimal policy in this setting is the best one among those
compatible with the constraints. The approaches closest to
ours are Parr and Russell’s HAM [1] and Andre and Russell’s
ALisp [10]. A similar approach can also be found in the field
of symbolic agent programming, as this is the case of Deci-
sion Theoretic Golog (DTGolog) [3, 5]. All of the mentioned
works allow to partially define the agent behavior in a high-
level language (hierarchical state machines, Lisp and Golog
respectively) and learn (or compute, in the case of DTGolog)
the best behavior when this is not specified. While we share

their motivation, our work departs from the previous ones in
at least two aspects: (1) the formalism we adopt allows for
dealing with reactive plans, non atomic actions, and contin-
uous state spaces: these aspects are strictly related, leading
to the representation of actions as states (instead of tran-
sitions) and to the need for events to both determine the
end of an action and to mark those perceptions among the
continuous infinity of possible ones that the agent should
pay attention to; (2) even more importantly, we do not as-
sume the existence of a Markov process as the underlying
environment (an assumption common to all of the previous
methods), but we derive a controllable process directly from
the plan. Notice that the implementation of Kalyanakrish-
nan and Stone [8] fixes the behavior of the agent everywhere
except for the two aspects they want to learn actually im-
plementing a HAM. Therefore, the performance evaluation
we carried can also be considered with respect to HAMs.

As a result of giving up the Markov assumption, and since
partial observability is an aspect of common applications
we consider in our approach, the control of the stochastic
process resulting from the plan schema belongs to the class
of problems usually referred to as with hidden states. The
most general formulation of learning with hidden state are
Partially Observable Markov Decision Processes (POMDP)
[4]. Most of the methods for POMDPs attempt some state
estimation, while we do not.

The stochastic process resulting from the observations in
a POMDP (ignoring the underlying state space) is non-
Markovian, and it is in some sense similar to the process
we generate. The literature about N-MDPs is not as exten-
sive as the one about MDPs, nonetheless some interesting
results have been proved. A review of the available results
is beyond the scope of this section, but we refer to the anal-
ysis by Pendrith and McGarity [11] and Singh et al. [15]
about the characteristics of optimal policies in N-MDP and
the effects of applying direct RL to them. An algorithm
sound in the general case (although potentially suboptimal)
is provided by Perkins [13] and the role of the exploration
policy in the convergence of Sarsa and Q-learning is pointed
out by Perkins and Pendrith [12]. Moreover, while examples
can be constructed to prove that some (extremely simple in-
deed) implementation of direct RL on N-MDPs can diverge,
there are promising empirical results about eligibility traces

729

and partial observability [9]. Thus, although a comprehen-
sive study about classes of N-MDPs and the traditional RL
algorithms able to cope with them is still an issue, the lack
of general results about convergence in non Markovian en-
vironments does not imply that those methods are doomed,
it simply entails that further work is still needed.

We have shown through experiments that standard RL on
the SNMDP built from a plan schema as shown before con-
verges in a well-known (quite difficult) benchmark domain.

6. DISCUSSION AND FUTURE WORK
In this paper we have presented a methodology to write

agent programs and to improve the agent’s behavior through
learning for a quite general category of plans. We have
defined a proper controllable stochastic process deriving it
from a partial specification of plans, in order to use it as a
model for RL algorithms to improve the performance of the
agent through experience. Finally, we have discussed the
applicability of the available RL algorithms to the particu-
lar class of stochastic processes that our method generates
and we have proved the effectiveness of our approach on a
widely adopted test bed.

In our work we used actions as procedures that are usu-
ally referred in Hierarchical RL as skills. A popular model
for skills is provided by the option framework [17] in which
options and basic actions can be simultaneously considered.
The role of options and their utility has been regarded as
arguable [7] when the focus is on optimality. Nonetheless,
in the class of problems we are considering optimality is
quite difficult to achieve anyway, and our approach semi-
automatically combining a set of handcoded skills proved to
be more effective than flat RL which, even though is sup-
posed to eventually reach the optimal behavior, was outper-
formed making use of a number of training episodes several
orders of magnitude lower. In this context, having a good
set of reusable skills to combine is of the utmost impor-
tance, and the work on temporal abstraction to create them
automatically can profitably be integrated with our method
providing different levels of intervention. Thus, where flat
RL suffers in scaling up the search for a global optimum, the
role of skills can be less arguable.

We have demonstrated in this paper a simple application
of our approach to Keepaway Soccer limiting for simplic-
ity the number of actions, and by no means obtaining the
best behavior achievable. Our method is conceived to scale
up to domains in which RL has not yet been successfully
applied. In future work we plan to face more complicated
settings possibly defining a new benchmark for hierarchical
methods. We also plan to extend our formalism to multi-
agent plans, exploiting events to represent message delivery
or, more in general, coordination signals, thus learning team
behaviors and coordination. Finally, we will further inves-
tigate the properties of the RL algorithms when applied to
the stochastic process generated from a plan schema, and
how to make use of the structure of plan schemas to obtain
processes that favor convergence and/or optimality.

7. REFERENCES
[1] D. Andre and S. Russell. Programmable reinforcement

learning agents. Advances in Neural Information
Processing Systems, pages 1019–1025, 2001.

[2] B. Bonet and H. Geffner. Planning and control in
artificial intelligence: A unifying perspective. Applied
Intelligence, 14(3):237–252, 2001.

[3] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun.
Decision-theoretic, high-level agent programming in
the situation calculus. In Proceedings of the National
Conference on Artificial Intelligence, pages 355–362.
AAAI Press / The MIT Press, 2000.

[4] A. R. Cassandra. Exact and approximate algorithms
for partially observable markov decision processes.
PhD thesis, Providence, RI, USA, 1998.
Adviser-Kaelbling, Leslie Pack.

[5] C. Fritz and S. McIlraith. Decision-theoretic golog
with qualitative preferences. In Proceedings of the 10th
International Conference on Principles of Knowledge
Representation and Reasoning, Lake District, UK,
2006.

[6] D. Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8(3):231–274, 1987.

[7] N. K. Jong, T. Hester, and P. Stone. The utility of
temporal abstraction in reinforcement learning. In The
Seventh International Joint Conference on
Autonomous Agents and Multiagent Systems, 2008.

[8] S. Kalyanakrishnan and P. Stone. Learning
Complementary Multiagent Behaviors: A Case Study.
In Proceedings of the 13th RoboCup International
Symposium, 2009.

[9] J. Loch and S. Singh. Using eligibility traces to find
the best memoryless policy in partially observable
Markov decision processes. In Proceedings of the
Fifteenth International Conference on Machine
Learning, pages 141–150. Morgan Kaufmann, 1998.

[10] B. Marthi, S. J. Russell, D. Latham, and C. Guestrin.
Concurrent hierarchical reinforcement learning. In
L. P. Kaelbling and A. Saffiotti, editors, IJCAI, pages
779–785. Professional Book Center, 2005.

[11] M. D. Pendrith and M. McGarity. An analysis of
direct reinforcement learning in non-markovian
domains. In J. W. Shavlik, editor, ICML, pages
421–429. Morgan Kaufmann, 1998.

[12] T. Perkins and M. Pendrith. On the existence of fixed
points for Q-learning and Sarsa in partially observable
domains. In Proceedings of the Nineteenth
International Conference on Machine Learning, page
497. Morgan Kaufmann Publishers Inc., 2002.

[13] T. J. Perkins. Reinforcement learning for pomdps
based on action values and stochastic optimization. In
Eighteenth national conference on Artificial
intelligence, pages 199–204, Menlo Park, CA, USA,
2002. American Association for Artificial Intelligence.

[14] O. Pettersson. Execution monitoring in robotics: A
survey. Robotics and Autonomous Systems,
53(2):73–88, 2005.

[15] S. Singh, T. Jaakkola, and M. Jordan. Learning
without state-estimation in partially observable
Markovian decision processes. In Proc. of 11th
International Conference on Machine Learning, 1994.

[16] P. Stone, R. S. Sutton, and G. Kuhlmann.
Reinforcement learning for RoboCup-soccer keepaway.
Adaptive Behavior, 13(3):165–188, 2005.

[17] R. Sutton, D. Precup, and S. Singh. Between MDPs
and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial
intelligence, 112(1):181–211, 1999.

730

